
Optimizing Simulink R© Models
Bentley James Oakes†, Clark Verbrugge†, and Hans Vangheluwe†‡

†McGill University, Montreal, Canada ‡University of Antwerp, Belgium

r

Problem Statement

The Simulink R© modelling tool is used to diagram and study cyber-physical systems, and to generate embeddable code directly from the models. However, this code
generation process means that inefficiencies in the model may be propagated to the code. Optimizations may be performed during code generation, but this may lead to
an unacceptable loss of traceability in determining which parts of the model were modified or removed.

Our works focuses on defining model-to-model optimizations, where the optimized model can be loaded back into Simulink for further development or analysis. We
suggest this improves traceability and can allow model specialization for different platforms. In this work, we present three optimizations to improve model simulation
performance and/or the visual layout of the model.

Optimization Classification

In our work, we propose an optimization classification based upon the platform-dependence and intent of the optimization. This classification creates stronger theoretical
connections to the compiler domain and the model transformation field, and assists us to discover and implement new optimizations.

Model-level
These optimizations are those that are
not dependent in any way on the target
architecture. As such, they focus on
changing the structure of the model
itself.

Examples:
I Algebraic simplification - Reduce

computational effort
I Dead-block removal - Extraneous

blocks should be removed
I Flattening - Remove subsystems

from the model

Platform-independent
These optimizations are specific to a
general class of target architecture,
such as whether the target is single- or
multi- core, or the target programming
language of code generation.

Examples:
I Transforming floating point

calculations into integer
representations

I Specializing blocks into structures
appropriate for a given target
language.

Platform-dependent
Platform-dependent optimizations
can be characterized by their
dependence on a particular target
architecture.

Examples:
I Re-order blocks to account for

machine’s caching strategy
I Schedule blocks among

machine’s processors

Optimization Hierarchy
These classification levels can be
placed in a hierarchical relationship,
with optimizations further down the
hierarchy more specific to a
particular machine.

A code synthesis workflow may
include transformations between
these levels, so that a general model
is specialized further and further until
code is generated from a
platform-specific model.

Generic

Model

Platform-Independent

Model

Platform-Dependent

Model

Model-level

Optimization

Platform-Independent

Optimization

Platform-Dependent

Optimization

Specialization

Optimization

Specialization

Optimization

Code

Generation

Optimization Procedure

Analysis
Our work defines an analysis procedure to collect dataflow information for each node in the Simulink
model. This procedure is based upon that used in the compiler literature. For example, for constant
folding, the information propagated is whether a block will always produce a constant value during
simulation.

Transformation
The optimization framework can then transform the model, based on the analysis results. This
transformation is performed by utilizing the Himesis model format. After the transformation is
complete, the optimized model is imported back into Simulink to be further developed [2].

Example Model-level Optimizations

Constant Folding

Out1

1

Product

Gain

5

Constant1

7.12

Constant

12.34

In1

1

Model before

Out1

1

Constant

439.304

In1

1

Model after

The constant folding optimization determines which blocks will always produce a constant value. For example, the
four blocks on the left in the original model can be replaced by one constant block, reducing the computational effort
required to simulate this model.

Dead-Block Removal

Out1

1

Product

Constant2

433.22

Constant1

112.32
In1

1

Model before

Out1

1

Product
Constant2

433.22

In1

1

Model after

The dead-block removal optimization determines which blocks produce output that is not involved in further
computation. For example, the output of the addition block on the left in the original model is not connected to
another block. Thus the addition block and one constant block can be removed from the model.

Flattening

Out1

1

Subsystem

In1

In2
Out1

Product

Constant

12.34

In1

1

Model before

Out1

1

Sum2Product2

Constant2

5.0

In2

2

In1

1

Inner subsystem before

Out1

1

Product2

Product

Constant2

5.0
Constant

12.34

In1

1

Flattened model after

The flattening optimization “lifts” blocks out of an inner subsystem of a model. Similarly to function inlining, this may
allow other optimizations to simplify the model even further. As well, a flattening transformation may replace the
flattening step performed during code generation, allowing the code generator to be less complex.

Experiments

Simulation timings before and after model optimization
Optimization Before Opt. (sec.) After Opt. (sec.)

Avg. Std. Dev. Avg. Std. Dev.
Constant Folding
Model 1 19.78 .05 16.95 .21
Model 2 18.35 .07 15.89 .13
Model 3 23.53 .09 20.77 .09
Model 4 18.01 .09 17.22 .23

Dead-Block Removal
Model 1 16.79 .27 16.91 .25

Flattening
Model 1 18.87 .22 18.75 .19
Model 2 21.77 .16 21.75 .38
Model 3 19.54 .12 19.94 .06

Timings for each step in our framework
Experiment Step Avg. Time (sec.) Std. Dev.
Connect to Simulink 11.71 .24
Import from Simulink 4.94 .04
Create model in Python .08 .01
Analysis .02 .00
Transformation .01 .00
Export to Simulink .01 .01

Conclusions & Future Work

The optimizations shown here demonstrate how the performance of a model
simulation can be increased (as for the constant folding optimization), and
how the visual layout of a model can be improved (as with the dead-block
removal and flattening optimizations). Our framework allows these
optimizations to be specified and implemented easily, and for model
optimization to be on the order of seconds.

Future work will focus on specifying more optimizations at all levels of the
optimization hierarchy. As well, experiments will be performed on larger and
more complex models. Finally, we aim to formally verify the model
transformations used.

Acknowledgments
We would like to thank Joachim Denil (NECSIS), Bart Pussig (University of
Antwerp), and Pieter Mosterman (The Mathworks) for their support.

Bibliography

[1] Bentley James Oakes, Optimizing Simulink Models, Report for COMP 621 -
Program Analysis and Transformations,
https://github.com/BentleyJOakes/BDOT

[2] Joachim Denil and Pieter J. Mosterman and Hans Vangheluwe, Rule-Based
Model Transformation For, and In Simulink, Theory of Modeling and Simulation
2014 (to appear)

http://msdl.cs.mcgill.ca/ bentley.oakes@mail.mcgill.ca

https://github.com/BentleyJOakes/BDOT
http://msdl.cs.mcgill.ca/

